

SOLUTIONS FOR HYDROGEN PRODUCTION & PURIFICATION

Sumaré – SP – Brazil - 2021 - Version 1

LEGAL NOTICE: THIS PRESENTATION, INCLUDING ITS ANNEXES, CONTAINS PRIVILEGED AND CONFIDENTIAL INFORMATION. THE REPRODUCTION OR DISCLOSURE OF ITS CONTENT TO THIRD PARTIES WITHOUT HYTRON'S AUTHORIZATION IS PROHIBITED.

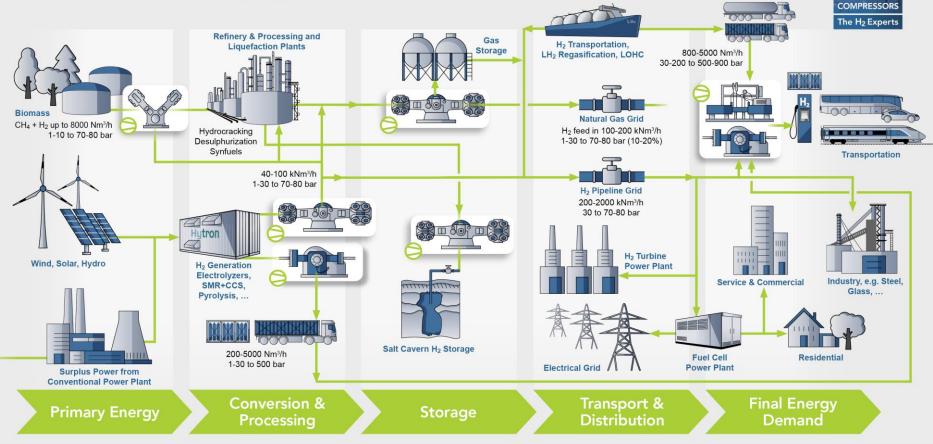
Hytron

Company's History

- Technology company founded in 2003
 - Spin-off from Hydrogen Laboratory (DAP IFGW), Unicamp
 - Strong R&D activities, focused on innovative applied solutions
- Expertise in Hydrogen Production and Alternative Energy Systems
 - Multidisciplinary team of specialists, inc. PhD's and MSc's
 - Technology development
 - System design, integration and supervision
- 2015: New Headquarters (Sumare, SP Brazil)
 - Facility dedicated to R&D (current and future portfolio), fabrication and testing ("cold" and "hot" runs)

HYTRON A NEA GROUP COMPANY

Press Release

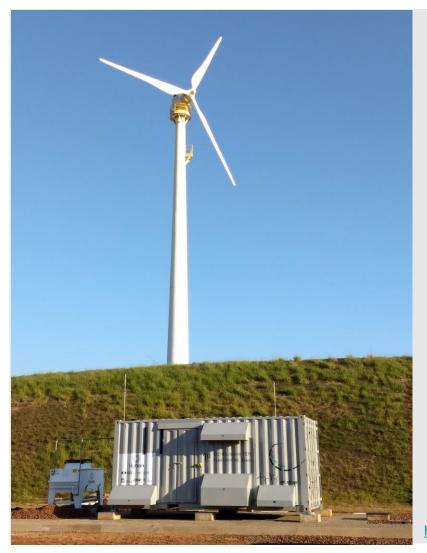

NEA GROUP acquired HYTRON Energy & Gas

Machinery and Plant Manufacturer strengthens leading position in hydrogen solutions

The NEUMAN & ESSER (NEA) GROUP from Übach-Palenberg acquired HYTRON Energy & Gas (HYTRON) Nov 19, 2020

The NEA GROUP Portfolio for the H₂ Value Chain

Electrolyser


Use of renewable sources H₂ and O₂ production Green H₂ applications Higher electrical consumption compared to reformers Higher global demand for modular applications

Steam Reforming

Use of local feedstocks Pure H_2 or H_2 + CO production Continuous production (no intermittence) Interest of the NG industry Green Solutions: (Biomethane end ethanol)

Pressure Swing Adsorption

H₂ Purification Methane Purification (others) It may be included in our equipment, or sold separately

Hypem Electrolyser

https://www.youtube.com/watch?v=FTJal93xHKA

HyPEM Water Electrolysis System Attributes

Rated productions up to **1,000** Nm³ H₂/h or **5** MW (per module) Integrated and autonomous solutions (**"Turn-Key"**):

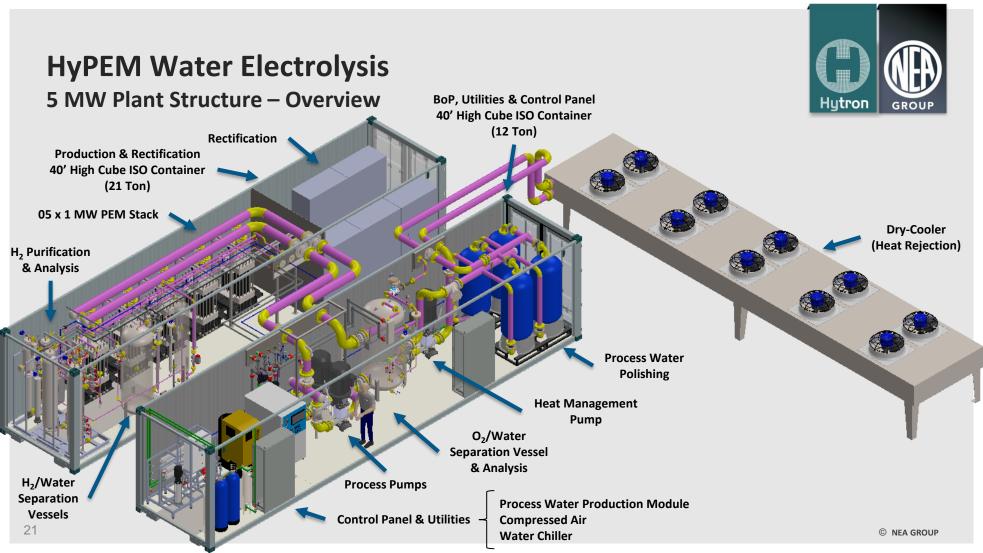
- H₂ and O₂ production module
- Gas purification & Purity supervision
- Thermal management & Utilities:

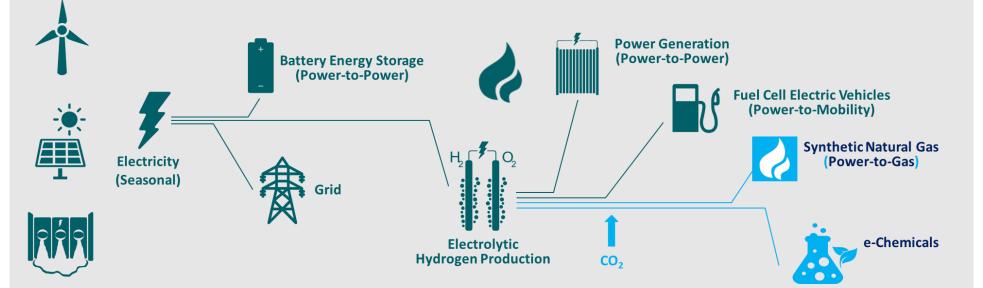
 $\circ\,$ Heat rejection, Instrument air provision, Process water production, Chilled water

• Power electronics, Controls & Cabinet (outdoor installation)

Proprietary control software & Supervisory platform (SCADA)

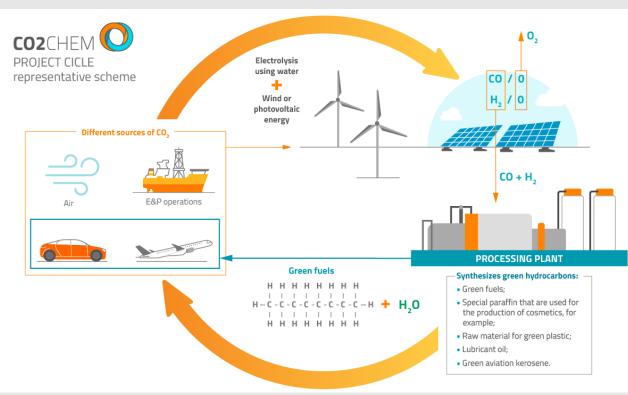
Hydrogen purity up to 99.9999% (6.0)


Maximum operating pressure: 40 bar_g


HyPEM Water Electrolysis Plant Sizes

"Small-Scale"		Industry / Energy	
HyPEM 10-40	10 Nm ³ H ₂ /h; 40 bar _g (50 kW Plant)	НуРЕМ 60-40	60 Nm ³ H ₂ /h; 40 bar _g (300 kW Plant)
HyPEM 20-40	20 Nm ³ H ₂ /h; 40 bar _g (100 kW Plant)	НуРЕМ 100-40	100 Nm ³ H ₂ /h; 40 bar _g (0.5 MW Plant)
HyPEM 30-40	30 Nm ³ H ₂ /h; 40 bar _g (150 kW Plant)	НуРЕМ 200-40	200 Nm ³ H ₂ /h; 40 bar _g (1 MW Plant)
		НуРЕМ 400-40	400 Nm ³ H ₂ /h; 40 bar _g (2 MW Plant)
		НуРЕМ 600-40	600 Nm ³ H ₂ /h; 40 bar _g (3 MW Plant)
		НуРЕМ 800-40	800 Nm ³ H ₂ /h; 40 bar _g (4 MW Plant)
		HyPEM 1,000-40	1,000 Nm ³ H ₂ /h; 40 bar _g (5 MW Plant)

PS: the association of HyPEM 1,000-40 systems creates Multi-MW solutions


H₂ FROM ELECTROLYSIS Power to X

Hytron GROUP

https://www.youtube.com/watch?v=MfZpdNxxCUM

CO2CHEM

Power to X

Hytron GROUP

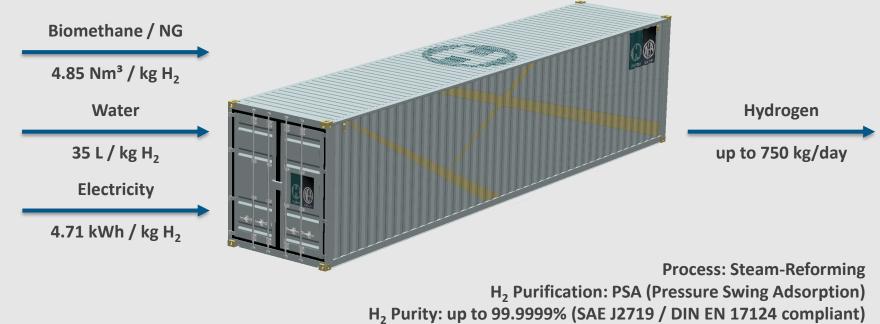
Hytron

Solutions Portfolio

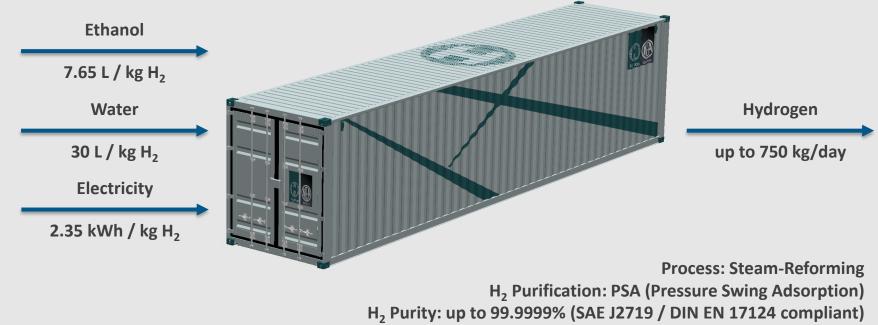
FUEL REFORMING

Fuel Reformers System Attributes

- Rated productions up to **350** $\text{Nm}^3 \text{H}_2/\text{h}$ (per module)
- Integrated and autonomous solutions ("Turn-Key"):
 - Feed treatment, Reforming & Shift conversion
 - PSA gas purification & Purity supervision
 - Thermal management & Utilities:
 - Heat recovery, Instrument air provision, Process water production
 - Controls & Cabinet (outdoor installation)
- Proprietary control software & Supervisory platform (SCADA)
- Hydrogen purity up to 99.9999% (6.0)
- Operating pressure: 10 bar_g



Fuel Reformers Product Performance – Biomethane



H₂ Pressure: 10 bar_g (typical)

Fuel Reformers Product to Come – Ethanol

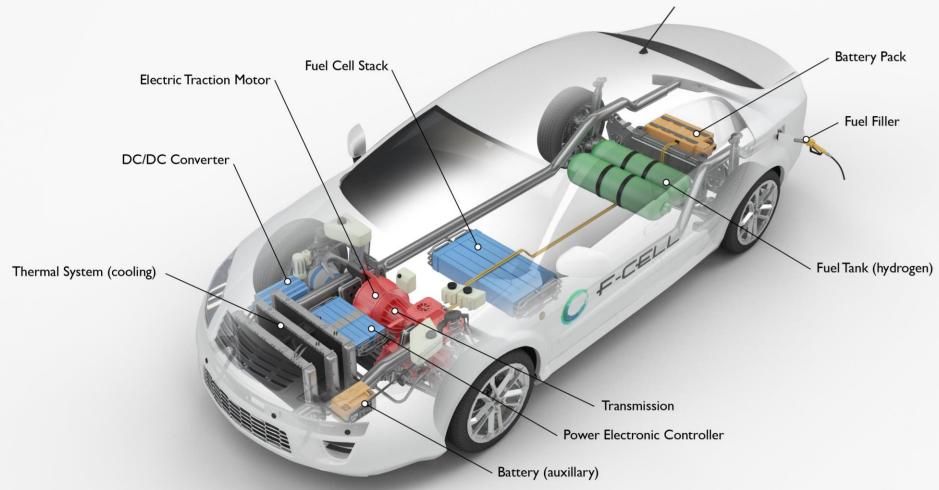
H₂ Pressure: 10 bar_g (typical)

Advantages of Using Ethanol for H₂ Production

Ethanol as Green Hydrogen Carrier

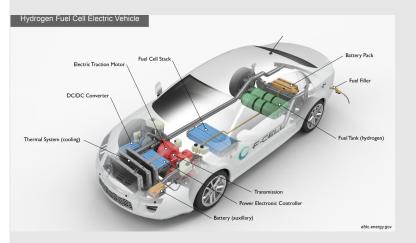
- Fact of being a renewable fuel
- Ease of transportation (usual for the Brazilian case)
- Brazil's potential as an important global player
- There is already an entire value chain established
- It is not a toxic fuel
- Enables the flat production of Green H2 (without itermitence)
- Easy to store
- Enables local production of H2 close to consumption

© NEA GROUP


Some Numbers from Ethanol Industry

Ethanol as Green Hydrogen Carrier

INPUT	QUANTITY	UNITS
Ethanol 1G	80	L / t _(sugar cane)
Ethanol 2G		L / t _(sugar cane)
Biogas		Nm ³ CH ₄ / t _(sugar cane)
E. Energy		kW / t _(sugar cane)
Ethanol 1G + 2G		
	10	Kg Π ₂ / l (sugar cane)
Biogas		kg H ₂ / t _(sugar cane) kg H ₂ / t _(sugar cane)
	1,84	kg H ₂ / t _(sugar cane)
Biogas	1,84 0,92	



Hydrogen Fuel Cell Electric Vehicle

CHARACTERISTICS WITH THE USE OF ETHANOL

\checkmark 7.6 liters of ethanol produces 1 kg of H₂ (Hytron Reformer)

- \checkmark H₂ storage in the car ranges from 5 kg to 7.5 kg H₂
- ✓ BOSCH Fuel Cell: 1 kg H_2 → 150 km
- ✓ Autonomy: 750 km to 1,125 km
- ✓ ETHANOL Consumption: 38 liters to 57 liters
- ✓ 57 liters of Ethanol \rightarrow 1,125 km (~20 Km/L)
- ✓ Refueling time: 3 min

THIS IS JUST THE BEGINNING!

NEUMAN & ESSER GROUP AGILE. SOLUTION. EXPERTS.

HYDROGEN GENERATION PLANTS HRS PROJECT REFERENCE

- Electrolyzer Unit
 - One 20" standard container for Electrolysis system
- Compressor Unit & Storage Unit
 - One 20" standard container for Compressor system

These dimensions are only for reference. NEUMAN & ESSER solutions for Hydrogen plants are tailor made for each customer and application. Actual plant dimensions are defined during Technical discussions and Engineering phase.

HyPEM 20-40

EQUIPMENT	HyPEM ELECTROLYSER
Cabinet	20' container, including process and controls
Ambient Conditions	up to +50°C
Rated Production (H ₂)	20 Nm³/h (1.8 kg/h)
Installed Power	120 kW
Raw Water Consumption *	34 L/h (may vary depending on the quality of water available locally)
H ₂ Purity (higher purities also available)	99.999% (5.0) \rightarrow SAE J2719 / DIN EN 17124 compliant
Maximum H ₂ Delivery Pressure	40 bar _g
Operating Range	10 to 100%
Nitrogen	Only for maintenances
Compressed Air	$5-7 \ bar_g$ (ISO 8573.1, 2010, class 2.4.1; Included and only used for piloting purposes)
Electrical Standard (typical)**	$380 \text{ Vac} / 3 / 60 \text{ Hz}$ (Different power supply standards can be provided) \odot NEA GROUP

55

HYDROGEN GENERATION PLANTS

Compressor Units

HOFER Diaphragm Compressors

HOFER Hydraulic Driven Compressors

HYDROGEN GENERATION PLANTS Storage

• High pressure hydrogen storage for both stationary and mobile applications

• Storage solutions for pressures of 200 bar up to 1,000 bar

• Type II or IV pressure vessels

Marcelo Veneroso, CEO (<u>marcelo.veneroso@neuman-esser.com.br</u>) Daniel Lopes, Commercial Director (<u>daniel@hytron.com.br</u>) Antonio Marin, Technical Director (<u>antonio@hytron.com.br</u>)

https://www.hytron.com.br

THANK YOU!